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Critical points in a turbulent near wake 
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Velocity data were obtained in the turbulent wake of a circular cylinder with an 
orthogonal array of sixteen X-wires, eight in the (x,y)-plane and eight in the (x,z)- 
plane. By applying the phase-plane technique to these data, three types of critical 
points (where the velocity is zero and the streamline slope is indeterminate) were 
identified. Of these, foci and saddle points occurred most frequently, although a 
significant number of nodes was also found. Flow topology and properties associated 
with these points were obtained in each plane. Saddle-point regions associated with 
spanwise vortices provide the dominant contribution to the Reynolds shear stress and 
larger contributions to the normal stresses than focal regions. The topology was found 
to be in close agreement with that obtained from other methods of detecting features 
of the organized motion. The inter-relationship between critical points simultaneously 
identified in the two planes can provide some insight into the three-dimensionality of 
the organized motion. Foci in the (x, z)-plane correspond, with relatively high 
probability and almost negligible streamwise separation, to saddle points in the (x, y ) -  
plane and are interpreted in terms of ribs aligned with the diverging separatrix between 
consecutive spanwise vortex rolls. Foci in the (x, 2)-plane which correspond, with 
relatively weak probability, to foci in the (x, y)-plane seem consistent with a distortion 
of the vortex rolls in the ( y ,  z)-plane. 

1. Introduction 
The theory of critical points, or points where the velocity is zero and the streamline 

slope is indeterminate, has been successfully applied to the description of turbulent 
flow patterns. Lighthill (1963) examined the viscous flow patterns close to a rigid 
boundary and classified certain critical points that could occur at no-slip boundaries. 
Smith (1972) applied critical-point theory to the study of conical flows. Perry & Fairlie 
(1974) addressed the problem of viscous flow and extended this approach to inviscid 
rotational flows far from boundaries, such as separation bubbles, jets and wakes. Hunt 
et al. (1978) extended the work of Perry & Fairlie, applying it to the study of flows 
around obstacles attached to surfaces. Using critical-point theory, Cantwell, Coles & 
Dimotakis (1978) described the conditionally sampled velocity flow fields of turbulent 
spots. Chong, Perry & Cantwell (1990) generalized the critical-point theory to the 
classification of three-dimensional flow patterns. More recently, three-dimensional 
critical-point methodology has been applied to data obtained from direct numerical 
simulations of both compressible and incompressible turbulent free shear flows (Chen, 
Cantwell & Mansour 1989; Chen et al. 1990; Soria & Cantwell 1993). The approach 
(see also Hunt, Wray & Moin 1988) uses the invariants of the velocity gradient tensor 
as the basis for identifying and classifying topological structures. 

Complete three-dimensional information on the velocity field is required for 
interpreting the topology of flow patterns near critical points unambiguously. Such 
information is not available from experiments. Consequently, a more restrictive 
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approach is necessary when analyzing experimental data. In the present experiment, 
two orthogonal arrays provided velocity fluctuations u and z, in the (x, y)-plane and u 
and w in the (x, z)-plane. Two-dimensional critical-point theory is applied to the data 
obtained in each plane. A critical point which is observed in sectional patterns is not 
necessarily a critical point in three-dimensional space; only in planes of symmetry, or 
more generally eigenvector planes, can sectional streamlines be safely interpreted 
(Perry & Chong 1993). Examples of misinterpretation which may arise when 
considering only sectional patterns in a plane through a critical point are given by Perry 
& Chong; for instance, one cannot distinguish between a vortex which is contracting 
and one which is being stretched. Even when the full three-dimensional velocity field 
is available, as in the DNS databases, unambiguous identification of vortices remains 
difficult (Robinson 1991). With the caveat that interpretation should be made with 
caution, sectional patterns around critical points can nonetheless provide useful insight 
into the turbulence structure. 

To our knowledge, critical points have been usually identified by eye and, 
consequently, the ensuing description of the flow patterns has been qualitative. In the 
present work, critical points are identified rigorously on the computer based on the 
( p ,  q)-plane classification (e.g. Kaplan 1958; Perry 1984; Perry & Chong 1987) so that 
flow properties in the vicinity of the critical points can be quantified. The main aim of 
this work is to describe the contribution of different critical points to the Reynolds 
stresses and investigate the interrelationship between critical points in the two 
orthogonal planes, thus permitting possible insight into the three-dimensional nature 
of flows. 

The turbulent near wake of a circular cylinder is considered here. This flow has a 
high degree of organization and is dominated by spanwise vorticity, implying that 
vortex lines can be assumed to be approximately normal to the (x,y)-plane. It is 
therefore attractive for the purpose of clarifying the contribution of the organized 
motion to turbulent transfer processes. In addition, the convection velocity of vortices 
for this particular flow has been investigated in detail by Zhou & Antonia (1992). This 
velocity is essential for the study of critical points as the flow field should be viewed in 
a frame of reference translating with the vortices. Significant information has already 
been obtained on the topology of the flow (e.g. Cantwell & Coles 1983; Kiya & 
Matsumura 1985; Hussain & Hayakawa 1987; Hayakawa & Hussain 1989). On the 
whole, the information addresses two-dimensional aspects of the organized motion 
although the experiments of Hayakawa & Hussain (1989) have shown that the 
organization may be significantly three-dimensional. The present results strengthen 
some of the suggestions made by Hayakawa & Hussain (1989) in connection with 
three-dimensional aspects of the organized motion. 

2. Experimental details 
Experiments were carried out in an open-return low-turbulence wind tunnel with a 

2.4 m long working section (0.35 x 0.35 m). The bottom wall was tilted to obtain a zero 
streamwise pressure gradient. A circular brass cylinder (d  = 12.5 mm) was installed in 
the mid-plane and spanned the full width of the working section, 20 cm from the exit 
plane of the contraction. This resulted in a blockage of about 3.6 YO and an aspect ratio 
of 28. Measurements were made at a constant free-stream velocity ( U, = 6.7 m sc') 
at a distance of 20 diameters behind the cylinder. The corresponding Reynolds 
number Re (= U,d/v) was 5600. In the free stream the longitudinal and lateral 
turbulence intensities were about 0.05 O h  and 0.08 YO respectively. 
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Using two orthogonal arrays, each comprising eight X-wires (figure l), velocity 
fluctuations u, u in the (x, y)-plane and u, w in the (x, z)-plane were simultaneously 
obtained. The arrays were attached to separate traversing mechanisms and could be 
moved independently of each other. The eight X-wires in the (x,y)-plane were fixed 
with the second X-wire (from the bottom) at the centreline so that they covered the 
transverse extent of vortices shed from the upper side of the cylinder, while the eight 
X-wires in the (x, z)-plane could be displaced in the y-direction and lay at y / d  x 0.7 or 
1.2. The nominal spacing between X-wires in both planes was about 5 mm except for 
a relatively large gap of 9.1 mm between the fourth and fifth X-wires in the (x, z)-plane. 

The Wollaston (Pt-10 % Rh) wires (diameter = 5 pm, length x 1 mm) were operated 
with constant-temperature circuits. Signals from the circuits were offset, low-pass 
filtered (cut-off frequency = 1.7 kHz), amplified and then digitized using two 16- 
channel, 12-bit RC A/D boards respectively into two personal computers (NEC 386) 
at a sampling frequency f, = 3.5 kHz per channel. Data acquisition by the two 
computers was synchronized using a common external trigger pulse (the configuration 
is shown in Krogstad, Antonia & Browne 1992). The wires were calibrated for velocity 
and yaw and continuously checked for drift. Using calibration data, signals 
proportional to u, u and w, together with the local mean velocities a, P( x 0),  w( z 0), 
were formed and stored on digital tapes. The duration of the digital records was about 
38 s. Subsequent data processing was carried out on a VAX 8550 computer. 

3. Interference effects 
Since a relatively large number of probes were used simultaneously, it was important 

to minimize the physical blockage due to these probes and ensure that the interference 
with the flow was small. Miniature ceramic tubes (diameter = 1.6 mm) were used as 
supports for the X-wires. The resulting blockage caused by the arrays, cables and 
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supports was estimated to be only about 3 YO. Profiles of U, (?)l12 or u,,,, (?)l12 or u,,, 
and UV obtained from the X-wires in the (x,y)-plane were compared with those 
obtained by traversing a single X-wire across the wake. Figure 2 shows that the 
agreement is quite good for U,  (2)'12, (2)li2 and adequate for Z. The deviation in UV 
is probably due to experimental uncertainties ( z 4 YO) which may appear relatively 
significant because of the generally small magnitude of Z,  and is not necessarily due 
to interference of probes with the flow. Measurements were also made with only one 
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of the arrays, the other one having been removed. The resulting distributions (not 
shown here) of U,  (g)l”, (2)liz, (2)liz, UV and UW were in good agreement with those 
obtained with both arrays. The above tests suggest that the interference of the probes 
and their support may be assumed to be negligible. 

4. Brief background to critical-point theory 
A detailed description of critical-point (sometimes phase-plane or phase-space) 

theory can be found, for example, in Kaplan (1958) and Perry (1984). We only briefly 
recall here the basic concepts within a two-dimensional framework. Although the 
discussion is for the (x, y)-plane, it is equally applicable to the (x, z)-plane. 

In the neighbourhood of the critical point (x,,yc) the nonlinear velocity components 
U(x,y) and V(x,y) can be approximated by the Taylor series expansions 

where the origin of the coordinate system is chosen at the critical point, i.e. x, = yc = 0 
and 

au av av 
al, = - , a2, =ax, a,, = F ,  au 

ax ’ aY 
a,, = - 

in each case, being evaluated at the origin. 
If A, and A, are the eigenvalues of A, the corresponding characteristic equation is 

IA - A / [  = 0, (2) 

AZ-ph+q = 0, (3) 

where / is the unit matrix. Expanding (2) gives 

where 
and 

q = det A = a,, a,, - a2, a,, 
p = trA = a,, +az2. 

(4) 
( 5 )  

The latter may be referred to as the velocity divergence in the (x,y)-plane. 
The eigenvalues are given by 

A l , ,  = g p  f 
where 

Critical points which may occur are classified (see Perry 1984) according to the values 
of p ,  q and A as three non-degenerate types, i.e. 

A = p 2  - 4q = (a,, - a2J + 4a2, a12. ( 6 )  

I. saddle-point (q < 0), 
11. node (q  > 0, A > 0), 

111. focus (A < 0, p $: 0),  
and four degenerate types, including the centre (q > 0, p = 0). The main interest here 
is in the three non-degenerate types and one degenerate type, the centre, which are 
sketched on the ( p ,  q)-chart of figure 3. Streamlines converge to or emanate from foci 
and nodes depending on whether p < 0 or p > 0. 

The spanwise vorticity w, and strain rate s at a critical point in the (x,y)-plane are 
given by 

av au 
ax ay a21 + a12. 

= -+- = 

3-2 
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FIGURE 3. Classification of critical points. 

If the eigenvalues are real, the corresponding eigenvector slopes are 

(9) 

At a saddle-point, the values of 8, and 8, give the inclinations to the x-axis of the 
diverging and converging separatrices through the point. 

tan 8 2  = (A, - a11)/a12 = a,,/(& - a221 . 

5. Identification of critical points 

U,, the velocity components are given by 
In a two-dimensional frame of reference which translates with a convection velocity 

u, = u- u,, u, = v. (10) 

The instantaneous signals U and V were formed by adding the local mean velocity 
values U and V (z 0) to the digital time series of u and v. 

The size of the experimental data grid is given by Ax = 1.7 mm and Ay = 5 mm 
(nominal spacing between the X-wires). The value of Ax was identified, using Taylor’s 
hypothesis, with the product ( -At  U,), where At is the time interval between samples 
(= 3500-’ s). A value of 0.8’7U0 was used for U, (see $7 for some justification of the 
value). In view of the disparity in the magnitude of Ax and Ay, data were added at two 
equispaced y-locations between each pair of existing rows of data. These extra data 
were obtained by interpolation, based on least-square cubic spline fits to the original 
data. 

Initially, the critical points were assumed to occur when both u, and 8, changed sign 
in their time series. To check the validity of these locations, analytical expressions for 
u,(x,y) and v , (x , y )  in the vicinity of these points were obtained by applying a surface 
fit, using a third-order Chebyshev series, to a grid of u, and u, data ( 5  points in both 
the x- and y-directions) centred at the initial critical point. The final location of a 
critical point is determined by solving 

~,(x,,Y,) = 0, U,(X,,Y,) = 0 
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FIGURE 4. Instantaneous sectional streamlines in the (x, y)-plane (upper trace) and (x, z)-plane (lower 
trace), y l d  = 0.7, U J U ,  = 0.87, f = 0 is arbitrary. F denotes focus, S saddle-point and N node. 

for x, and y,. This is done by using a quasi-Newton optimizing algorithm (Gill & 
Murray 1986) which searches for the minimum o f f =  { [ ~ , ( x , y ) ] ~  + [ ~ , ( x , y ) ] ~ ) ~ ' ~ .  When 
this minimum is significantly small (here, a value of 10-3m s-' was used as the 
threshold), the corresponding values of x and y are assigned to x, and ye.  If it is not, 
the initial critical point is discarded. For those critical points which meet the criterion, 
velocity derivatives at those points are calculated, thus allowing p ,  q and A to be 
estimated and the type of a critical point to be determined, as discussed in $4. The 
location and type of identified critical points are quite consistent with those seen on 
sectional streamlines, i.e. lines which are tangential to the velocity vectors (e.g. Bisset, 
Antonia & Browne 1990b). 

Since the primary interest here is to focus on the relatively large-scale aspects of the 
organized motion, it was necessary to exclude from the above population of critical 
points those which may either be associated with small-scale motions or caused, 
because of the unavoidable spatial jitter of structures, by intersections with one plane 
of features that belong nominally in the other plane. To implement this elimination, 
additional criteria were introduced. 
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For detected foci (with the same sign of wt) only one detection was accepted within 
a certain longitudinal distance of the minimum detecting wavelength A,. Initially, A, 
was assumed to be equal to the average shedding wavelength A, but, after inspecting 
instantaneous sectional streamlines, A, was reduced to 0.6h0. When several foci 
occurred within this distance, the one associated with the largest magnitude of A 
(negative) was chosen. This is equivalent to selecting the focus with the largest Iw,I 
since, according to (7), Iw,I is large when ul, and a,, are large in magnitude and opposite 
in sign, i.e. when A, from (6), is most negative. Approximately two-thirds of the 
number of original foci remained after this criterion was applied. 

Saddle-point detections were accepted only when they occurred between two foci 
(with w, of the same sign) that were separated by a distance no greater than 2A,. Only 
the detection with the largest magnitude of s was retained. Approximately two-thirds 
of the number of original saddle-point detections survived this criterion. No additional 
condition was used for node detections since the relationship between nodes and 
aspects of the relatively large-scale motion is unclear. 

Examples of the three types of critical points are shown in two sets of instantaneous 
sectional streamlines (figure 4). In each set, the flow is 'visualized' simultaneously in the 
(x,y)- and (x,z)-planes. The thick line is each plot denotes the intersection with the 
other orthogonal plane while arrows about some foci indicate the direction of vorticity 
which will be used to analyse the configurations of distorted rolls in $9. As a result of 
the additional criteria, some foci, e.g. at ( tUJd,  y / d )  = (- 3.5, 1.4), (0.4, 1.5) in figure 
4(a) and (-2.6, 1.2) in figure 4(b), and saddle points, e.g. at ( tUJd,  y / d )  = (-7.5, 
0.7), (0.2, 1.3) in figure 4(a) and (-2.5, 1.1) in figure 4(b),  are not detected. 

6. Conditional and structural averages 
The conditional average of an instantaneous quantity F is given by 

where k represents time (in samples, positive or negative) relative to the detection 
pointsj,, and N is the total number of detections. (For convenience, the subscript k 
will be omitted.) 

F can be viewed as the sum of the time-mean component F and the fluctuation 
component f. The latter can be further decomposed into the coherent fluctuation 
f"= ( f )  and a remainderf,, namely 

Also 

where f and g can each stand for either u or u. 
If the conditionally averaged structure begins k, samples before the detection instant 

and ends k, samples after this instant, a structural average is denoted by a double 
overbar, e.g. 

The value of k ,  (= k,) is given such that the duration (k ,  + k, + 1) corresponds to 
approximately the average longitudinal extent of regions associated with foci and 
saddle points. 
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7. Flow topology and properties associated with critical points7 
Since the location of a critical point (u, = u, = 0) is clearly affected by the choice of 

the convection velocity (see (lo)), it was important to assess the sensitivity of the 
critical-point location to selected values of U,. Several methods were used (Zhou & 
Antonia 1992) to determine the variation of U, across the wake; the results showed 
that U,  increased from about 0.85U0 at the same centreline to 0.92U0 near the edge 
of the wake, this variation being approximately independent of the method used. One 
way of quantifying the effect of U, on the critical-point coordinates is to compare 
instants at which critical points are identified using different U, values. The comparison 
is illustrated here via the probability of the difference between the detection instants of 
these points corresponding to U, = 0.85U0 and U, = 0.92U0, i.e. the extreme values of 
U, which are likely to be encountered. The relative probability shown in figure 5 is 
normalized so that the maximum value is unity. For foci, this value occurs at t = 0;  the 
probability has fallen to about 0.1 for the t = rf: 1 sample, implying that the error in 
estimating the focus location is quite small. For saddle-points and nodes, the spread 
in the probability is slightly greater but the peak remains sharp, suggesting that the 
overall effect of the U, variation is small. This is not surprising since at x/d = 20, the 
r.m.s. values of u, and u, on the centreline are about 0.12U0 and 0.16U0 respectively, 
i.e. nearly one order of magnitude larger than the largest excursions of U, (z f 0.03U0). 
Therefore, any variation in U, is unimportant relative to the velocity field (uc, a,). In 
addition, the circumferential velocity distribution within the vortices is similar to that 
of an Oseen vortex (Zhou & Antonia 1993 a), i.e. it increases appreciably near the vortex 
centre, implying that the variation in the focus location caused by uncertainty in U, will 
be minimized. This may explain why the error in estimating the focus location is 
smallest. Because the resolution in determining the lateral position ye of critical points 
is relatively poor (refer to the size of the experimental data grid in Q5), the effect of U, 
on ye has not been investigated. However, it seems unlikely that this effect will differ 
significantly from that on x,, or the detection instant. The final choice of U, was 
0.87U0, which occurs at the most probable vortex location (Hussain & Hayakawa 
1987; Zhou & Antonia 1992), and all subsequent results in the (x,y)-plane were 
obtained for this value of U,. 

Following the application of the additional criteria introduced in Q 5, about 3600 foci 
remained in each plane and the corresponding Strouhal number is 0.18, close to the 
shedding Strouhal number (z 0.2 for the present Reynolds number). The remaining 
number of saddle-points was somewhat smaller (about 2800 in each plane). Foci and 
saddle-points dominated the critical-point population, although the number of nodes 
was not insignificant, about 800 in the (x,y)-plane and 1600 in the (x,z)-plane. Further 
statistics and properties associated with critical points are presented in Zhou & 
Antonia (1993b). 

Figure 6 shows the probability density functions (p.d.f.s) of w,, s and p at critical 
points in the (x,y)-plane. The p.d.f. of w, at foci is skewed with its mode at 
w2d/Uo z - 1.5, whereas the p.d.f.s at saddle points and nodes are centred near zero 
and show less spread, i.e. the flow around these points is approximately irrotational. 
The strain rate at saddle points is large, the mode occurring at sd/U, z 0.8. The 
bimodal shape of s suggests that above the centreline a small number of saddle points 
may have a negative strain rate. The distributions of s-values at foci and nodes appear 

t Unless otherwise stated, the results in both the (x,y)- and (x,z)-planes are only presented for 
critical points associated with the structures of negative vorticity since critical points associated with 
the structures of positive vorticity do not show different features. 
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to be more concentrated near zero, indicating that the flow near these points is not 
highly strained. 

Before examining the p.d.f. of the velocity divergence p ,  some discussion of its 
implication seems appropriate. For p > 0, the continuity equation au/ax+ av/ay + 
i3w/az = 0 requires that aw/dz is negative, implying that fluid emanating from critical 
points, e.g. fluid spiralling out of foci (figure 3), in the (x,y)-plane is due to a spanwise 
flow deficiency. Conversely, for p < 0, aw/az > 0, implying that part of the spanwise 
flow originates from fluid which converges towards critical points, e.g. fluid spiralling 
into foci (figure 3j, in the (x,y)-plane. In other words, a non-zero p implies either 
a deficiency or surplus in spanwise flow, i.e. a local three-dimensionality. A zero 
p implies a local two-dimensionality. Figure 6(c) shows that the p.d.f. of p at foci is 
approximately Gaussian and centred on zero. This suggests that, locally, the flow near 
foci is most likely to be almost two-dimensional, i.e. foci degenerate into centres (figure 
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detections: - 1.3 to 0.1, step = 0.2. (Dashed and solid lines represent negative and positive contours 
respectively.) 

3) and the probability that p > 0 is almost equal to that for p < 0. For saddle-points, 
the distribution of p d /  Uo has a mode at p d /  U,, x - 0.2, implying an excess of spanwise 
flow near saddle points. This seems consistent with the existence of a pressure 
maximum at saddle points (Perry 1984). This pressure maximum tends to drive fluid 
away from saddle points. The p.d.f. of p is bimodal at nodes - the peaks occur at 
p d / U o  x kO.8 - suggesting that the flow near these points is strongly three- 
dimensional. 

Conditional sectional streamlines based on detected foci near the most probable 
location ( y l d  = 0.5-0.9) in the (x,y)-plane are shown in figure 7 (the same scales are 
used in the x- and y-directions in order to avoid any distortion of the physical space). 
These streamlines exhibit the familiar KAmin vortex tree topology, virtually identical 
to those (not shown) based on vorticity detections (Zhou & Antonia 1993a). This 
topological similarity is also observed in conditional vorticity contours (figure 8). 
Evidently, foci coincide with peak vorticity locations, i.e. vortex centres. Since the 
vorticity detection focuses on vorticity, the corresponding contours (figure 8 b) are 
more concentrated with a maximum magnitude slightly higher than in figure 8 (a). 
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FIGURE 9. Conditional sectional streamlines based on saddle-point detections for 1.0 < y / d  < 1.4. 
(Solid lines denote the positions of the ( x ,  z)-plane referred to in later figures.) 

The conditional sectional streamlines (figure 9) based on saddle points near the most 
probable location ( y / d  = 1 .O-1.4) in the (x, y)-plane exhibit a topology similar to that 
of figure 7, except for streamwise displacement. Sectional streamlines based on WAG 
(window average gradient) detections (see Antonia & Fulachier 1989; Bisset et ul. 
19906) in the u-signal at y = 0.7d are very similar (not shown). The separatrix angles 
8, and 0, at the saddle point are about *50", in good agreement with their modes 
indicated by the p.d.f.s (not shown) of 0,- and 0,-values. For irrotational flow (oz = 0), 
the converging and diverging separatrices should be orthogonal (Perry 1984). The fact 
that the value of (B,-8,) is slightly greater than 90" is probably associated with the 
existence of weak vorticity at the saddle points (see figure 6u). 

8. Contributions to the Reynolds stresses associated with foci and saddle 
points 

In order to quantify the contributions that foci and saddle-point regions make to the 
Reynolds stresses, these regions should first be characterized in a way that does not 
depend on the observer. Soria & Cantwell (1 993) applied a three-dimensional critical- 
point classification to each point in free shear flows using DNS databases. They 
identified strain-rate dominated regions and vortex-like structures from the invariants 
P, Q and R of the velocity gradient tensor. A similar approach is adopted here by 
applying a two-dimensional critical-point classification scheme to the data in the (x, y ) -  
plane. In this case, the matrix invariants corresponding to the velocity gradient tensor 
are now p and q (see (4) and ( 5 ) ) ;  their values characterize the local topology of the fluid 
motion at each point in the flow (figure 3). We may identify saddle-point regions with 
q < 0 and focal regions with A < 0. Note that the identification of these two regions 
is invariant with respect to the reference frame. 

Iso-contours of (A)  and ( 4 )  which are based on focus detections are shown in figure 
10. The focal region, identified by (A) < 0 (hatched area in figure lOa), is considerably 
elongated laterally, probably due to the spread in the lateral location of foci. This is 
reflected in the iso-contours of (A) (figure 11) based on foci detected near the most 
probable location ( y / d  = 0.5-0.9). These contours exhibit less elongation because of a 
smaller variation in the lateral location of foci than in figure 10. Zhou & Antonia 
(1993 u) observed that the maximum circumferential velocity around the vortex centre 
occurs at a radius of about 0.5d. This radius corresponds approximately to the contour 
of (A)  = 0 in figure 11, suggesting a correspondence between the boundary of the focal 
region and the maximum circumferential velocity, which is sometimes used to identify 
the boundary of vortices (e.g. Hussain & Hayakawa 1987). Note also that the focal 
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FIGURE 10. (a) Iso-contours of (A) 8 / U i  based on focus detections: -0.6 to 0, step = 0.1. 
(b) Iso-contours of (q)@/U2, based on focus detections: -0.015 to 0, step = 0.005. 
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FIGURE 11. Iso-contours of ( A )  # / U :  based on focus detections between y / d  z 0.5-0.9: 
- 1.2 to 0, step = 0.2. 

region is associated with a high concentration of vorticity (cf. figure 8a). It seems 
therefore reasonable to associate the focal region with the vortical region. 

The saddle-point region, identified by ( 4 )  < 0 (hatched area in figure lob),  is much 
larger than the focal region. It appears that, collectively, the focal and saddle-point 
regions account for all the space within one wavelength (A,,). This is also verified by iso- 
contours of (A) and ( 4 )  which are based on saddle-point detections (not shown). 
However, the boundary between the regions indicated by the contours is not identical 
to that in figure 10, i.e. the iso-contours of (A) and ( 4 )  are, albeit to a small extent, 
sensitive to different detections. A reasonable estimate of the boundary between focal 
and saddle regions is the average spatial extent determined from the iso-contours of 
(A) = ( 4 )  = 0 based on focus and saddle-point detections. 

As indicated in figure 10, focal regions do not occupy the same amount of space as 
saddle-point regions. Contributions to the Reynolds stresses (5) from each region may 
be estimated by weighing structural averages in proportion to the longitudinal extent 
A of each region, namely a>; = [A,/A,l&),, a>,* = [ A , / A , l 6 ) , ,  

where the asterisk denotes the contribution to the Reynolds stresses from either 
region and the subscriptsfrnd s refer to foci and saddle-points respectively. 

The value of &),*,, = cfg): + cfT),* (figure 12) is approximately equal to 2, the 
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and their sum (0). 

departure being within 10 % offs. This suggests that, for Reynolds stresses at least, the 
combination of the selected focal and_saddle-point regions is representative of the flow. 
Inneither region does (u")*/'?and (?*)/?vary greatly withy, but (E*)/Zdoes vary, 
particularly near the centreline where Z is small (refer to figure 2c). The contribution 
to the total (time-averaged) Reynolds stresses greater in thEsaddLe-point than in the 
focal region. For the saddle-point region, (u")*/u' and (?)*/? are in the range 
55-65 Yo, whereas foci contribute 25-45 %. The saddle-point region contributes more 
than 90% to Z, the foci making only a negligible contribution. The slight negative 
value of (E);  is probably due to the influence of the saddle-point region on the other 
side of the wake. As y / d  increases, the influence weakens and the magnitude of (z); 
decreases. While the focal region is associated with a high concentration of vorticity, 
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FIGURE 13. Possible spatial configuration of rib (adapted from Hayakawa & Hussain 1989). 

the saddle-point region may be identified with the shear-stress or strain-rate bearing 
region. This does not signify that the vortical region is not important in the context of 
forming UV; on the contrary, it may play a major role in setting up the strain field. 

9. Some three-dimensional considerations 
Previous research on turbulent near wakes has revealed two main types of vortical 

structures which contribute to the three-dimensionality of this flow. One of these is a 
quasi-two-dimensional vortex roll with predominantly spanwise vorticity. The other 
generally lies in the (x, y)-plane and has vorticity components in the x- and y-directions 
only. It has been suggested (e.g. Kiya & Matsumura 1988; Hayakawa & Hussain 1989) 
that the latter structures are in the form of ribs which are inclined in the (x,y)-plane 
and either wrap around or connect successive spanwise structures or rolls. While flow 
visualizations in near wakes (Meiburg & Lasheras 1987; Williamson 1988) at low 
Reynolds numbers point to the presence of ribs, there does not appear to be any 
evidence (either through flow visualizations or more directly through vorticity 
measurements) for their existence at high Reynolds numbers. 

If ribs are indeed inclined in the (x, y)-plane, they should intersect the (x, 2)-plane 
between successive rolls, as sketched for example in figure 13 (see Hayakawa & Hussain 
1989). These intersections should coincide with concentrations of vorticity or foci. The 
simplified sketch shows that the streamwise location of these foci coincides 
approximately with the saddle-point region in the (x, y)-plane. The relative probability 
of the length of time between saddle-points in the (x, y)-plane and foci in the (x, z)- 
plane is shown in figure 14, the reference time (tU,/d = 0) corresponding to the instant 
at which the saddle-points are detected. Note that the peak probability does indeed 
occur near the origin. The time delay between the two peaks corresponding to the two 
(x,z)-plane locations suggests an inclination to the x-axis of about 55". This angle 
differs only slightly from that (z 50") of the diverging separatrix through the saddle 
point. One may surmise that the ribs are approximately aligned with the diverging 
separatrix, although slightly upstream from it. It should be remembered that in figure 
14 the foci in the (x, z)-plane can be anywhere within the span of the probes; it is only 
the time duration that is considered. 
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FIGURE 14. Relative probability (smoothed) of length of time between saddle-points in the (x,y)- 
plane and foci in the (x,z)-plane ( tU , /d  = 0 is the instant at which saddle-points are detected). 

1 .o 

0.8 
x 
Y .- - 
s 2 0.6 

& 

2 
.g Y 0.4 
cd - 

0.2 

0 
- 4  -2 0 2 4 

tU,/d 

FIGURE 15. Relative probability (smoothed) of length of time between foci in the (x,y)- and 
(x, z)-planes ( tU, /d  -- 0 is the instant of foci detection in the (x, y)-plane). 

Figure 15 shows the relative probability of the length of time between foci in the 
(x,y)- and (x,z)-planes, the reference time (tU,/d = 0) being the instant at which foci 
in the (x,y)-plane are detected. The peaks occur about half a wavelength apart from 
tUJd = 0, i.e. in the saddle-point region, consistent with figure 14, whereas the minima 
occur near foci (tU,/d = 0) in the (x,y)-plane. The non-negligible magnitudes of the 
minima indicate that foci in the (x, z)-plane may occur simultaneously with foci in the 
(x,y)-plane. The two illustrations in figure 16 (see Hayakawa & Hussain 1989 and 
Bisset, Antonia & Britz 1990a) are consistent with this possibility. However, they may 
not be the only possibility. Others, such as independent structures that just happen to 
be nearby and vortices inclined, relative to the z-axis, in the ( y ,  z)-plane are also likely. 
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FIGURE 16. Possible spatial configurations of distorted rolls: (a) kinked inwards; (b)  kinked 
outwards (Hayakawa & Hussain 1989; Bisset et al. 1990~) .  
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FIGURE 17. Relative probability (smoothed) of length of time between vorticity detections in the 
(x,y)- and (x, 2)-planes ( y / d  = 0.7). 

When the vorticity method (Zhou & Antonia 1 9 9 3 ~ )  is applied, the relative 
probability (figure 17) of the time between detections in the (x,y)- and (x,z)-planes is 
not quite the same as in figure 15. The reference time ( t U c / d =  0) in figure 17 
corresponds to the instant when vortices in the (x, y)-plane are detected. Prominent 
peaks occur about half a wavelength apart from tUc/d  = 0, i.e. in the saddle-point 
region. This agrees with figure 15. But a smaller peak appears near t U J d  = 0. It has 
been verified that the correspondence between vorticity and focus detections is quite 
good in the (x,y)-plane but not as good in the (x,z)-plane, i.e. some detectable wy 
concentrations do not seem to correspond to foci. In a turbulent wake, vortex rolls are 
generally non-uniform and perhaps very short (Bisset et al. 1990a), which may give rise 
to a spanwise gradient au/az of u, as indicated by the contours (figure 18) of ( u ) / U ,  
based on focus detections in the (x, y)-plane. This additional au/az, corresponding to 
the vortex centre, is likely to cause a concentration of wy( = au/az-aw/ax) without a 
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FIGURE 18. Contours of ( u ) / U o  in the (x,z)-plane based on focus detections in the (x,y)-plane: 
-0.045 to 0.05, step = 0.005. (Dashed and solid lines represent negative and positive contours 
respectively.) 
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FIGURE 19. Conditional sectional streamlines based on foci (0.5 < z/d < 1 .O) in the (x, z)-plane 
corresponding to (a) the peak ( t I / , /d  = 0.75) in figure 14 and (b)  the valley (tU,/d = 0) in figure 15. 
(Window width = f0.25 average shedding wavelength, t = 0 is the detection instant, Uc = 0.87U0, 
y/d = 0.7, arrows indicate the direction of vorticity.) 

contribution from awlax. Such a concentration is not necessarily associated with a 
focus. This may account for the absence in figure 15 of the minor peak which occurs 
near tUJd  = 0 in figure 17. The magnitude of this peak, as shown in figure 17, reduces 
as the minimum detecting wavelength A, increases from 0.6& to 0.75h0, suggesting that 
the wy concentration due to the spanwise non-uniformity of vortex rolls is generally 
weaker than that due to ribs (corresponding to the saddle-point region). 

Conditional sectional streamlines in the (x, y)-plane based on detections of foci for 
0.5 < z / d  < 1 .O which correspond to either the peak in figure 14 or the valley in figure 
15 are shown in figures 19(a) and 19(b) respectively. The streamlines in figure 19(a) 
reflect, as expected, the presence of vorticity in the vicinity of the detection point; there 
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FIGURE 20. Conditional sectional streamlines based on foci (- 1.2 < z / d  < -0.7) in the (x, z)-plane 
corresponding to (a) the peak ( t U J d  = 0.75) in figure 14 and (b) the valley (tU,/d = 0) in Figure 15. 
(Window width = k0.25 average shedding wavelength, U, = 0.87U0, y / d  = 0.7, arrows indicate the 
direction of vorticity.) 

is no evidence however of vortical regions elsewhere in that plane. It would seem that 
ribs occur with high probability but their occurrence is random in the spanwise 
direction. Also, the jitter in the longitudinal position is sufficiently important to yield 
the results in figure 19(a). The appearance of the streamlines in figure 19(b) reveals a 
secondary focus at z/d M - 1.5, opposite to the primary focus centred at z/d M +0.75. 
The presence of the secondary focus seems consistent with configuration (a) in figure 
16. Similar observations can be obtained when conditional sectional streamlines (figure 
20) are based on detections of foci for - 1.2 < z / d  < -0.7. Apparently, the topology 
in figure 20(b) is in agreement with configuration (b). Examples of the two 
configurations can be identified in the instantaneous data of figu:e 4. At t U J d  M -6.3 
(figure 4a) ,  one focus at z /d  M 0.8 in the (x, z)-plane has oy of opposite sign to the focus 
at tUJd M -5.7 and z /d  M - 1.6. They both appear to be related to the focus at 
y / d  M 1 .O in the (x, y)-plane and suggest the occurrence of an outwardly kinked roll. 
At tUJd M 5.5 in figure 4(b),  two foci in the (x,z)-plane, assuming they are related to 
the focus at y / d  M 0.5 in the (x,y)-plane, may represent the legs of an inwardly kinked 
roll. It would thus seem that both configurations in figure 16 are possible in the near 
wake. We emphasize that these configurations are the least likely of all events, as 
indicated by the minima in figure 15 and the weak secondary focus (by comparison to 
the primary focus) in figures 19(a) and 20(b). 

A few curves in figures 19 and 20, particularly figures 19(a) and 20(a), are clearly 
identifiable which run approximately in a spanwise direction and divide the flow into 
distinct regions. It has been verified that the value of (u,) is zero along these curves, 
i.e. these curves are stagnation curves. They may be referred to as two-dimensional 
bifurcation lines since two incoming sectional streamlines combine to form one, or two 
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FIGURE 21. Conditional sectional streamlines in the (s, 2)-plane ( y / d  = 0.7) based on (a) saddle-points 
and ( h )  foci ( 1  .O < y / d  < 1.4) in the (.u,y)-plane. (Arrows indicate the direction of vorticity.) 
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FIGURE 22. Possible configurations of rolls which are inclined in the (y,z)-plane. 

outgoing sectional streamlines diverge from a point along these curves. The former is 
a negative bifurcation, while the latter is a positive bifurcation (Hornung & Perry 1984; 
Perry & Hornung 1984). 

Figure 21 shows a comparison of conditional sectional streamlines in the (x, z)-plane 
( y / d  = 0.7) which are based on either saddle-point or focus detections 
(1 .O < y / d  < 1.4) in the (x, y)-plane. While streamlines based on saddle-point 
detections show no evidence of rotational flow regions, corroborating the suggestion 
that ribs seems to occur randomly, those based on focus detections tend to delineate 
a pair of counter-rotating vortical regions. The counter-rotating pair seems consistent 
with the likely three-dimensional nature of the vortex rolls. In particular, it is consistent 
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with the existence of vortex rolls (figure 22) that are inclined in the (y, z)-plane. (Note 
that the sketches in figure 22 are not meant to imply that vortex rolls have well-defined 
boundaries or that their shapes are known precisely; they are only an attempt to 
interpret the correspondence between foci observed in the (x, y)-plane and those in the 
(x, yI-plane.1 

10. Conclusions 
The phase-plane technique has been applied to the identification of critical points 

from simultaneously sampled measurements in the (x, y)-  and (x, 2)-planes in the near 
wake of a circular cylinder. The critical-point population is dominated by foci and 
saddle points, although the number of nodes was significant. Foci are associated with 
local vorticity maxima, while saddle points correspond to extrema in the local strain 
rate. Accordingly, a detection method based on foci yields approximately the same 
topology as a vorticity-based detection method and a detection method based on 
saddle points is in close agreement with the WAG detection methods. At nodes, the 
velocity divergence is large, implying a relatively strong local three-dimensionality. 

Regions associated with foci and saddle points can be identified from the values of 
the invariants p and q.  Saddle-point regions are much large in size than focal regions. 
Correspondingly, the former regions dominate the contributions to the Reynolds 
stresses. They account for 55-65 YO of the Reynolds normal stresses and for more than 
90 YO of the Reynolds shear stress. Focal regions account for about 2 5 4 5  YO of the 
Reynolds normal stresses and make a negligible contribution to the Reynolds shear 
stress. 

The inter-relationship between critical points in the (x, y)- and (x, 2)-planes has 
provided some useful information on the three-dimensionality of the organized motion 
in the near wake. The most probable location for foci in the (x, z)-plane corresponds, 
with almost negligible streamwise separation, to the saddle point in the (x, y)-plane. 
This relationship quantifies the existence of vortical structures (ribs) which lie, on 
average, in the (x,y)-plane and are approximately aligned in the direction of the 
diverging separatrix. These structures are more likely to occur randomly (in the 
spanwise direction) rather than as counter-rotating vortex pairs. The correspondence 
between foci in the (x, y)-plane and foci in the (x, z)-plane is much less probable than 
that between saddle points in the (x,y)-plane and foci in the (x,z)-plane. This 
correspondence may reflect the presence of distorted vortex rolls, e.g. inclined to the 
z-axis, kinked in the (y, z)-plane. Although the precise shape of the rolls is not known, 
the likelihood that they are symmetrically kinked, either inwardly or outwardly, would 
appear to be quite small. 
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grateful to Dr D. K. Bisset for his comments and suggestions on the manuscript. The 
support of the Australian Research Council is appreciated. 
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